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A procedure is developed for obtaining maximun-likelihood estimates

of the reflection coefficient sequence fr~~ satanic data. The

reflection coefficient sequence is modeled as an Impulsive process ,

where the reflection locations are statistically independent and the

reflection aiplit*aies are uncorrelated and Gaussian distr ibuted. The

wavelet and all other par eters are assuned known. The results of this

procedure are desor%strated for synthetic data .

I. Introduction

The optimal ~~~other method for estimating reflection coefficients

froe .ei lc reflect ion signal s, as developed by Mendel (1-4], is a

aln1~~~-variance linear estimator which does not take into account the

Impulsive nature of the reflection coefficient sequence. Figure 1 shows

the results of using the optimal another on a synthetic seimnogran; the

circles mar k the non-zero reflection coeff icients and the bars depict

the correspond ing estimates. As one can see, the mIn1ain-varla~e

estimates are generally non-zero at every time point and tend to isder-

shoot the non-zero values of the reflection sequence. Alternatively,

the (unconditional) maxIim~ -1ikelthood estimator described in this paper

taes the c~~~1ete statistical description of the model and produces $ectI~ ~
0

estimates with the sane statistical characterist ics as the process being -______

estimated. 
_______
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As with the min imun-var iance estimator , we model the satanic signal

as a linear convolution of the source wavelet with a reflection process ,

corri~ ted by various recording effects. These recording effects include

the geoç*~one response, aliasing filter, lnstrLinent noise , cul tural

noise, and can include modeling errors. Further , the signal to be

estimated, ~‘~~~1y the plane wave reflection coefficient ~~~~~~~~~~~~~~, is not

the sane as the signal to be convolved with the wavelet, n~~&y the

Impulse response of the Eatth. The difference between these two signals

can be regarded as q~ologica]. effects, which include spherical

divergence , theorbtion, and multiples. Sane of these effects can be

included In cur model , which is shown in Figure 2. (Includ ing multiples

would req uire a non-linear model of very high order , and is generally

not feasible at this point.) Given this model in state vector form , and

the var iance of ~(k) , one can perform opt imal mnoothing.

for our maxi -likel ihood estimato r , we model the Earth as a

series of distinct reflectors , so that the reflection coefficient

sequence will consist of a few isolated i~pulees. To avoid a lev thy

discussion for conversion fran continuous to discrete time, let us

a.m that these reflections can only arrive at discrete times. ~ ie to

the difficulty in modeling multiple reflections aid tran ission

effects , let us simpily ignore the additional Information availshle from

these effects. Finally, we ass~me that the locations (In time) of the

reflect ions are statistically indspsndsnt of each other , and that the

magnitudes of these reflections are uncorre lat d aid Gaussian

distributed.

Figure 3 depicts a synthetic reflection co.fficient sequence

— 2 —
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generated using this model , and Figure 4 depicts the corresponding

sei ogran. For this ex~~~1e we have ignor ed all geological effects and
1~all recording effects except for corr i~~tion by additive white Gaussian

noise. This is not a constraint on the method , but was done simply to

avoid c~~ lications in the presentation. Figure 4 depicts the signal

fran which the estimates in Figure 1 were obta ined .

II. The Product Model

lb simplify the estimation probles, we have found it convenient to

model the reflection coefficient sequence , ~(k ) ,  as a product of two

rand om processes of the form

p( k ) — r (k) q(k) (1)

where r (k) is a white Gaussian process arid where q(k) is a binary
process , which can only take on the values 0 or 1. Ithen a reflection

arrives at t ime k we set q(k)s1, and when no reflection arr ives at

time k wa set q(k) -O . Therefore the process g(k) is determined entirely

by the locations of the reflections, so that the magnitude information
mist be contained In the process r(k) .

Th. statistical distribution of the r (k) is c~~~letely described by

its variance, C, sinc, its mean is zero . The distr ibut ion of the q(k)

is given by

____ -. - — . -- — -- .-- .-- ——---- -—— - .---- .- -- - - - .. . 
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f A whsn q(k) —l
Pr (q(k) } — j  1-A when q(k).O (2)

J~ 0 otherwise

where the parameter A can be thought of as the averag e ni~~ .r of

reflections per sample . Using the product model , we intend to find

max l*nn-likelihood estimate s for both the q(k ) aid the r (k) , then use
the invariance property of maxlmun-likelthood estimates to obtain
estimates of the p (k) using

p(k) — r(k) g(k) . (3)

III. Estimating the Reflection A~~litudes

For the case when the reflection locations are kr~~n, so that the

q(k) are given , we can obtain maximun-likelihood estimates of the r(k)

using an optimal ~~ other by incorporating the q(~~ into the state

vector model. This results f rom r (k) being a purely Gaussian process,

aid the asslam-likelihood estimates of a Gaussian process are the same

as the mInI~~~-var iance estimat es. Figur e 5 damonstrates how the q(k)

enter into the convolution model. figure 6 kiowa the resulting

estimates for the case when the reflection locations are known. As one

can , these .stimat.s are far açerior to those obtained without such
a pr iori ~~ w1edgs, which s depicted In Figure 1.

kiother way to estimat, the u(k) when the reflection locations are

kaniai is to inoorporat. the q(k) Into th. var iance model. That is,

I 
_ _ _ _ _ _ _  

_ _ _ _
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instead of using the unconditional variance

E(1a 2 (k) } — C (4)

which was used to Obtain the mlnlmun-var lance estimates, we could use

the time-varying conditional variance

E{sz 2 (k) I q(k) } — C q(k) CS)

aid model the p(k) as being the input to the convolution model. This

way the optimal msoother will estimate p (k) directly.

For the case when only the max Iiam~-likel1hood estimat es q(k) are

known a priori, the maximun-likelihood estimates of the r (k) can be

obtained using an optimal eacother by incorporating the g(k) Into the

state vector model, In place of the now un~mown q(k) . This can be shown

by factoring the likel ihood expression into a term which depends on the

r (k ) aid a term which depends of the q(k) . The term which depends of

the r(k) will have the form of a conditional Gaussian density function ,

- - 
but where q(k) r~~, eppears in place of q(k) . Therefore the problen of

estimat ing the reflection amplitudes has a Ia~ wn cioaed form solution,

but it requires first estimating the reflection locations.

IV. Estimating the Reflection Locations

In practice the reflection locations are not known a prior i arid

— 5 —
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aunt be estimated by maximizing the likel ihood .x&~uaaion , which is

givei by

L(g~~ I !~~
} ) ( L (M) I 2~~

} prtq (M) j (6)

using the notation

— (z(l) , z(2) , ... , z (M ) 1 ’ (7)

aid

2
(M) 

— [q(0), q(1), ..., q01—l) 1’ . (8)

Given the q(k), we can express the z(k) as linear combinations of the

r (k) plus the recording noise, both of which are modeled as Gaussian;

hence, the pcabthility density function ~(1(M) i2~~ 
} is simply a

mult.tvar late Gaussian density function . Since the reflection locations

are statistically independent, the pcob~~ility distribution of the q(k)
is given by

Pr(g~’~) • ~~~ Pr(q(k) ) (9)

where Pr (q(k) ) isa given by equation (2) .
1~ can o~~~ate the likelihood for any given set of observations

aid estimates ~~~ efficiently using a Y~~~ i filter by Lnaor-
porating the estimates q(k) into th. model , since the likelihood is a

-- _ _ _ _
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simple function of the resul ting Innovat ions process and variance [5] .

~ it while we can c~~ ute the likelihood easily, it is ~~~~~~~~~ ~~
maximize it with 

~~~~~ 
to the unicnown vector ~~M) ~~ __ ~asonable

s.mt of time.

Since there are non-linear interactions between the g(k) In the

likelihood expression, is cannot deco~~le the maximization with respect

to the ixidivl~~~l q(k) , but rat her ~~~t maximize with respect to the

entire sequence. Since the q(k) are discrete valued, max imization will.

consist of co~~~r ing the likelihoods of different sequences (rathe r than

setting a gradient to zero) . finally, since each q(k) can take on two

po thle values ar id since there are It samples in the sequence , there is

a total of ~~ possible sequ noes for which one must c~~~are the

likel ihoods. **n M is on the order of several hundred , this would

require several centuries of ccm~uter time.

V. S~t~cvt1mal Detection of Reflect ions

~6iile we may not be able to determine the global max iimzn of the

likel ihood expression, we can always design a method for detecting

significant reflections ; that is, we can determine relatively high

likelihood or near aaxiia.in likelihood estimates for the q(k) . Further ,

since we can easily ocn~~ite the likelihood for a given estimated
~~~~~ 2

(M)
, is can c~~ .re the relative performance of different

detectors. * hive found one such detector which performs very well

indeed.

- 7 -
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This detector uses an a~~roxlmation to the likelihood ratio for

q(k) of the form
A-

L( 3
ojc~t) (k) 3 q(k) — l ~ (k+L) 

~A(k) (10)
L{ (k+L ) (k) D q(k) —O ~(k+L) ~

where L ( • I • )  is given by equation (6) and where the k+t length vector
j(k+t)(k) is defined as

— [q(O) , q(l), ... , q(k— l) , q(k), x, ..., xl’

This ratio compares the likel ihood for two particular sequences which

differ only in their values for q(k) . Furthe r , these likel ihoods use

only k+z observations , where & is some anall integer , rathe r than using

all M available observations. These sequences are generated by

recursively detecting q(O ) , q( l) ,  ... q(M ) using

1 1 when !t(k)> 1 2q(k) 
~ 0 when A (k) Cl (1 )

for k—O ,l...M-1 . The value of q(j) in ~ (k+t) (k) for j>k is replaced by

the expected value ,

E{q(j)} — )i . (13)

figur e 7 depicts the estimates which resul t from this detector

— 8 —
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using &—5 . The reflection anpliti.des were estimated by incorporating

the detected q(k ) into the state vector model. These estimates are

obviously not as good as those in Figure 6 , in spite of the fact that

their likel ihood is many t imes higher. The reason for this is that the

seven missed reflections were not large enough to be likely. Further ,

we have determined that this estimated sequence ~~M) is more likely than

any of its nearest neighbors.

Because of comon terms in the two sequences used in equation (10) ,

this a~~rox lmate likelihood ratio can be computed by running two Kalmai

filters for only £ samples each , so that detecting the entire sequence

~(M) req uires about 2t times as much canp uter time as ccmputing its

likel ihood. *~ile increasing £ increases the ca~çutationai burden , it

also improves the resulting likel ihood . But since the marginal

improveneit fran Increasing £ drops off rapidly as £ incr eases, a

relatively snail t will general ly suffice. Figur e 8 denonstrates the

effect of varying £.

As shown in Figure 9 , as the signal—to- noise ratio decreases , the

nunber of missed detections Increase s.

VI • Future I~ rk

If one is more interested in reduci ng the nunber of missed

detections than in maintaining the invar iance property, then one might

prefer to obta in Bayesian estimates of the reflection locations . The

solution to th. Bayesian detection problen consists of cx~zçaring the

- — --—- --- - — ,—— . — - —- -- - - —~ -~~~ -- . - —  — —



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~

-
~~~~~

-

likelihood ratio to sane thre shold other than unity [6] . Since our

s*.toptimal detector computes an approx imate likelihood ratio , one can 
A

easily extend this approach to obtain approx imate Bayesian estimates.
(~ e advantage of the maximun-likel ihood approach is that it can

handle the case when the source wavelet, or any other model par ameter ,

is ur~kmwn. This is done by obta ining maxiinun- likelthood estimates for

these unknown par aneters , which is a conventional non-linear optimiz-

ation probl en. We have shown that this approach can resolve the phase

ambiguity probl en in wavelet extr action . This is the area of our

present interest .

Also this approach can be extended to include any bimodal or

multlznodal Gaussian process. For example, the Earth model may include

snail reflectors within the layer s, so that the reflection coefficient

sequence is actually drawn fr an two distr ibutions: one for the layer

interfaces and one for the intra —layer structures. If we model these

magnit ude distr ibut ions as being Gaussian with diffe r ing var iances, then

we can represent the reflection coefficient sequence using our prod uct

model by letti ng q(k ) ta ke on two non-zero values.

— 1 0 —
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VI I .  Conclusion

By representing the reflection coefficient seque nce as a product of 4
a Gaussian process and a binary process, the estimation prob].en is 

A

separated into two simpler probl ens. First , the significant reflections

are detected. Second , the amplitudes are estimated using an optimal

snoother which incorporates the solution to the first problen in the

state vector model .

4iile it is impossible to definitely determine the reflection

locations which max imize the likelihood in a reasonable amount of time,

we have presented an efficient method for recursively detecting the

significant reflections using an approx imat ion to the likel ihood ratio .

This sLtoptimal detector has performed very well on synthetic data .

— 1 1 —
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• MIN • VARIANCE EST ., SNR= i 0 • 0Il A
U.

o .eoo •

• 

O.LOOE ’Oo~ I ?  °

O.000E+OO _ _ _ _ _
_ _ _ _ _

_ _

_

— 0.1 0OE + 00~
—0,1.50

—o .aoo
0

0 .250 
1 I • • • • • • r I I I I I U U~ 

—

O.000E+00 0.200 0.400 0.€00 0.800 1.00
- - SECONDS -

Fig. 1. Minimum Variance Estimates, SNR—lO .O
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CONV OLUTION MO DE L

Seismic I Recording I
Source “1 Effec ts ~~Z (Ii)

Receiver

j z (k ) 
j ?~ó~?iCQ!J ~~~ ? 9I’~J ~~Z ( k )

~L(k) is th e desired reflection seq uence. 
-

z (k) is the observed dota . -

Fig. 2. Convolution Model
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REFLECTION SEQUENCE
• 0.250 I I a I I I I I I I I I I I l j l I I I II p p j I p I I I I I I p I j j I p I I j i i j & ji j  

—

0.200

0.150 -

• 0 , 100E 400- -

0.50 0E—Oi- -

0.000E.00 I I 
I

f
—0.500E—O i I ~-

—0. LOOE+00-

—0.150 .

—0.200

0.250 — I I I I T I I I II J ! I V I I I J II I T I U J ! I I II I I I I I I I I ,I ! I , J I I , I I  —

0.000EeOO 0.200 0.400 0 600 0.800 1.00
SEC ONDS

Fig. 3. Synthetic Reflection coefficient Sequence
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• OBSERVED SIGNAL , SNR=1O .O
A A I I I  I I I I I I I  I I i I I I I & I I I I I I  I I I I I I I i i i i  i i i i  i
V S  V

0.200 -

0.160

0.120 
-

~~~~~~~~-0.120 -

— — L I I I I I I I IJ I ( I I I I I ! 11 1 1 1 T 1 1 1 1 1( 1 1 1 1 1 1 I 1 11 1 1 1 1 1 1 1 U J  —

0.000E#00 0.200 0.400 0.600 0.800 1.00

SECONDS

Fig. 4. Synthetic Seismogram, SNR— 10.0
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ESTIMATING AMPLITU DES GIVEN LOCATI ON S

Whe n the q (k) are know n , the maximu m—l ikeliho od
estimates for the r(k) con be obtained by using on
optimal smoother where the q (k) ore included in the
state vector model :

r(k)

We con then estimate ~i ( k )  using

~~(k) c’(k) q (k )

Fig. 5. Incorporating q(k) into- the Convolution Mod•1
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0.250 I I I I I I & I I & I &• I I _ I I I I II I_1~~I I I~~~~I . I I I_ I I I I I I I II I I  A ’

0.200

0.150

0.iOOE+00 -

0,500E—0i I
0.000E+00• - I ______________  I 

_ _ _ _

—O .500E—01~ I
— 0 .LOOE ’OO-

—0.1.50

—0.200

— 0.250 I I I J I I I I Ij I I I I I U J I WJ . I I I I I J  I 4 L I 1 I I J I  I I II I I I I I I I I I  —

0.000E.00 0.200 0.400 0.600 0.800 1.00
SEC ONDS

Fig. 6. Maximum Likelihood Estimates, q(k) Known

20

- ~~~— - — — —
~~

- - ------ —--- -



DETECTED EST., L= 5, SNR= 10.0
O A I I I  1 1 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 11 1 . 1 1 1 1 1  I I I  I 1 1 1 1 1 1 1• . V

0.200
0.150 1

O.iOO E+O O~ I ° 1

0.500E—0i- 1 1. 0

• O ,000E 400 
• 1

—0.5 00 E— 0x~
— O .L O O E + O 0

—0.150 . -

—0.200

0,250 T T I I . 1 1 5 1 1 . , u , , i u , ( i , , . . , . , , . 1 1 . , , , , , ,. 1 1 5 1 . , . . ._ ,_ —
0.00 0E+00 0.200 0.400 0.600 0.800 1.00

SEC ONDS

Fig. 7. Detected Estimatss, SNR—10.0

.
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LOG LIKELIHOOD , SNR= 10,0 -

52 _I _I I I I I I I I I I I I I I I I I I I _ I _ I_I I _I • I I I I I I I I I I I I I I I I I I I I I I I

52.4 A

52.0
51.6
51.2 -

50.8
50.4
50.0

49.6

49.2

48.8 I I I I I I I U IJ I ~~~~ I I 1 I I I 1j I I I I I I I I I1 I I I W I—U I I Ij I E I I I I I I !  —

1.00 2.00 3.00 4.00 5.00 6.00

STEP S SMOOTHED

Fig . 8. Log Likelihood vs. 9.
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DETECTED EST., L= 5, SNR= 2.0
0.250 — I_ I I I  I I I  I Ii I I I  I I I I I  I i .  I t  I I I I I i  i & i i i i i  I i  i i i  i i t  i i —
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Fig . 9. Detected Estimates, SNR=2.O
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